1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
mod cia;
mod pia;
mod via;

pub use cia::Cia;
pub use pia::Pia;
pub use via::Via;

use crate::memory::Port;

/// A port and its associated registers on the MOS 6522 VIA or MOS 6526 CIA.
pub struct PortRegisters {
  /// The Port implementation that this instance delegates to.
  port: Box<dyn Port>,

  /// Stores the current value written to the port.
  writes: u8,

  /// Data Direction Register. Each bit controls whether the line is an input (0) or output (1).
  ddr: u8,

  /// Latch enable: Present on the MOS 6522 VIA.
  latch_enabled: bool,
}

impl PortRegisters {
  pub fn new(port: Box<dyn Port>) -> Self {
    Self {
      port,
      writes: 0,
      ddr: 0,
      latch_enabled: false,
    }
  }

  /// Read from the port, respecting the DDR.
  pub fn read(&mut self) -> u8 {
    (self.port.read() & !self.ddr) | (self.writes & self.ddr)
  }

  /// Write to the port, respecting the DDR.
  pub fn write(&mut self, value: u8) {
    self.writes = value;
    self.port.write(value & self.ddr);
  }

  /// Poll the underlying port for interrupts.
  pub fn poll(&mut self, cycles_since_poll: u64, total_cycle_count: u64) -> bool {
    self.port.poll(cycles_since_poll, total_cycle_count)
  }

  /// Reset the port to its initial state.
  pub fn reset(&mut self) {
    self.ddr = 0;

    self.port.reset();
  }
}

/// The manner in which the timer will output signals to the port, if at all.
pub enum TimerOutput {
  /// The timer will not output to the port.
  None,

  /// The timer will output a single pulse on PB6 or PB7.
  Pulse,

  /// The timer will output a set number of pulses.
  PulseCount,

  /// The timer will toggle the output on PB6 or PB7.
  Toggle,
}

/// The source of the timer's clock, which controls the rate at which its clock decrements.
pub enum TimerClockSource {
  /// Use the internal system clock.
  Phi2,

  /// Use pulses on the external CNT pin.
  Count,

  /// Count underflows of the other timer.
  Chained,

  /// Count underflows of the other timer, but only if the CNT pin is high.
  ChainedCount,
}

/// A timer circuit on the MOS 6522 VIA or MOS 6526 CIA.
pub struct Timer {
  /// The latched value that the counter is reloaded from.
  latch: u16,

  /// The current value of the timer's internal counter.
  /// In reality, this is a 16-bit unsigned register. We store it as a 32-bit
  /// signed integer since polling the timer does not happen at every cycle.
  counter: i32,

  /// Whether the timer's interrupt flag is set.
  interrupt: bool,

  /// If false, the timer will fire once; if true, it will load the latch into the counter and keep going
  continuous: bool,

  /// Whether the timer is currently running (decrementing).
  running: bool,

  /// The manner in which the timer will output to the port.
  output: TimerOutput,

  /// The source of the timer's clock.
  clock_source: TimerClockSource,
}

impl Timer {
  pub fn new() -> Self {
    Self {
      latch: 0,
      counter: 0,
      interrupt: false,
      continuous: false,
      running: true,
      output: TimerOutput::None,
      clock_source: TimerClockSource::Phi2,
    }
  }

  /// Poll the timer (decrement the counter, fire the interrupt if necessary).
  pub fn poll(&mut self, cycles_since_poll: u64, _total_cycle_count: u64) -> bool {
    if self.counter <= 0 {
      if self.continuous {
        self.counter += self.latch as i32;
      } else {
        self.running = false;
        return false;
      }
    }

    if self.running {
      self.counter -= cycles_since_poll as i32;

      if self.counter <= 0 {
        // The counter underflowed
        self.interrupt = true;
        true
      } else {
        false
      }
    } else {
      false
    }
  }

  /// Handle a read from the timer's data register on the MOS 6526 CIA.
  fn read_cia(&self) -> u8 {
    let clock_source = match self.clock_source {
      TimerClockSource::Phi2 => 0b00,
      TimerClockSource::Count => 0b01,
      TimerClockSource::Chained => 0b10,
      TimerClockSource::ChainedCount => 0b11,
    };

    let output = match self.output {
      TimerOutput::None => 0b00,
      TimerOutput::Pulse => 0b01,
      TimerOutput::Toggle => 0b10,
      TimerOutput::PulseCount => 0b11,
    };

    (clock_source << 4) | (!self.continuous as u8) << 3 | (output << 1) | (self.running as u8)
  }

  /// Handle a write to the timer's data register on the MOS 6526 CIA.
  fn write_cia(&mut self, value: u8) {
    self.running = (value & 0b0000_0001) != 0;
    self.continuous = (value & 0b0000_1000) == 0;

    self.output = match value & 0b0000_0110 {
      0b0000_0000 => TimerOutput::None,
      0b0000_0010 => TimerOutput::Pulse,
      0b0000_0100 => TimerOutput::Toggle,
      0b0000_0110 => TimerOutput::PulseCount,
      _ => unreachable!(),
    };

    self.clock_source = match value & 0b0011_0000 {
      0b0000_0000 => TimerClockSource::Phi2,
      0b0001_0000 => TimerClockSource::Count,
      0b0010_0000 => TimerClockSource::Chained,
      0b0011_0000 => TimerClockSource::ChainedCount,
      _ => unreachable!(),
    };
  }

  /// Reset the timer's internal state.
  fn reset(&mut self) {
    self.latch = 0;
    self.counter = 0;
    self.interrupt = false;
    self.continuous = false;
    self.running = true;
    self.output = TimerOutput::None;
    self.clock_source = TimerClockSource::Phi2;
  }
}

/// The shift register used by the MOS 6522 VIA and MOS 6526 CIA.
pub struct ShiftRegister {
  /// The data currently in the shift register.
  data: u8,

  /// The control register used on the MOS 6522 VIA.
  control: u8,

  /// The current direction set on the MOS 6526 CIA.
  /// If 0, the shift register is in input mode; if 1, the shift register is in output mode.
  direction: bool,
}

impl ShiftRegister {
  pub fn new() -> Self {
    Self {
      data: 0,
      control: 0,
      direction: false,
    }
  }

  /// Reset the shift register's internal state.
  pub fn reset(&mut self) {
    self.data = 0;
    self.control = 0;
    self.direction = false;
  }
}

/// Registers for interrupt flags and interrupt enable bits.
/// Each bit from 0 to 6 corresponds to an interrupt source.
pub struct InterruptRegister {
  /// The current state of which interrupts are enabled.
  /// If a bit is set, the corresponding interrupt is enabled.
  pub interrupt_enable: u8,
}

impl InterruptRegister {
  /// Read the apparent value of the interrupt register, based on the provided interrupt enable bits.
  pub fn read_flags(&self, mut value: u8) -> u8 {
    if (value & self.interrupt_enable) != 0 {
      value |= 0x80;
    }

    value
  }

  /// Read the value of the interrupt enable register.
  pub fn read_enable(&self) -> u8 {
    self.interrupt_enable
  }

  /// Write to the interrupt enable register.
  pub fn write_enable(&mut self, value: u8) {
    if (value & 0x80) != 0 {
      // set bits
      self.interrupt_enable |= value & 0x7F;
    } else {
      // clear bits
      self.interrupt_enable &= !(value & 0x7F);
    }
  }

  /// Is the specified interrupt enabled?
  pub fn is_enabled(&self, interrupt: u8) -> bool {
    (self.interrupt_enable & interrupt) != 0
  }
}

impl InterruptRegister {
  fn new() -> Self {
    Self {
      interrupt_enable: 0,
    }
  }

  fn reset(&mut self) {
    self.interrupt_enable = 0;
  }
}