1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
mod cia;
mod pia;
mod via;
pub use cia::Cia;
pub use pia::Pia;
pub use via::Via;
use crate::memory::Port;
/// A port and its associated registers on the MOS 6522 VIA or MOS 6526 CIA.
pub struct PortRegisters {
/// The Port implementation that this instance delegates to.
port: Box<dyn Port>,
/// Stores the current value written to the port.
writes: u8,
/// Data Direction Register. Each bit controls whether the line is an input (0) or output (1).
ddr: u8,
/// Latch enable: Present on the MOS 6522 VIA.
latch_enabled: bool,
}
impl PortRegisters {
pub fn new(port: Box<dyn Port>) -> Self {
Self {
port,
writes: 0,
ddr: 0,
latch_enabled: false,
}
}
/// Read from the port, respecting the DDR.
pub fn read(&mut self) -> u8 {
(self.port.read() & !self.ddr) | (self.writes & self.ddr)
}
/// Write to the port, respecting the DDR.
pub fn write(&mut self, value: u8) {
self.writes = value;
self.port.write(value & self.ddr);
}
/// Poll the underlying port for interrupts.
pub fn poll(&mut self, cycles_since_poll: u64, total_cycle_count: u64) -> bool {
self.port.poll(cycles_since_poll, total_cycle_count)
}
/// Reset the port to its initial state.
pub fn reset(&mut self) {
self.ddr = 0;
self.port.reset();
}
}
/// The manner in which the timer will output signals to the port, if at all.
pub enum TimerOutput {
/// The timer will not output to the port.
None,
/// The timer will output a single pulse on PB6 or PB7.
Pulse,
/// The timer will output a set number of pulses.
PulseCount,
/// The timer will toggle the output on PB6 or PB7.
Toggle,
}
/// The source of the timer's clock, which controls the rate at which its clock decrements.
pub enum TimerClockSource {
/// Use the internal system clock.
Phi2,
/// Use pulses on the external CNT pin.
Count,
/// Count underflows of the other timer.
Chained,
/// Count underflows of the other timer, but only if the CNT pin is high.
ChainedCount,
}
/// A timer circuit on the MOS 6522 VIA or MOS 6526 CIA.
pub struct Timer {
/// The latched value that the counter is reloaded from.
latch: u16,
/// The current value of the timer's internal counter.
/// In reality, this is a 16-bit unsigned register. We store it as a 32-bit
/// signed integer since polling the timer does not happen at every cycle.
counter: i32,
/// Whether the timer's interrupt flag is set.
interrupt: bool,
/// If false, the timer will fire once; if true, it will load the latch into the counter and keep going
continuous: bool,
/// Whether the timer is currently running (decrementing).
running: bool,
/// The manner in which the timer will output to the port.
output: TimerOutput,
/// The source of the timer's clock.
clock_source: TimerClockSource,
}
impl Timer {
pub fn new() -> Self {
Self {
latch: 0,
counter: 0,
interrupt: false,
continuous: false,
running: true,
output: TimerOutput::None,
clock_source: TimerClockSource::Phi2,
}
}
/// Poll the timer (decrement the counter, fire the interrupt if necessary).
pub fn poll(&mut self, cycles_since_poll: u64, _total_cycle_count: u64) -> bool {
if self.counter <= 0 {
if self.continuous {
self.counter += self.latch as i32;
} else {
self.running = false;
return false;
}
}
if self.running {
self.counter -= cycles_since_poll as i32;
if self.counter <= 0 {
// The counter underflowed
self.interrupt = true;
true
} else {
false
}
} else {
false
}
}
/// Handle a read from the timer's data register on the MOS 6526 CIA.
fn read_cia(&self) -> u8 {
let clock_source = match self.clock_source {
TimerClockSource::Phi2 => 0b00,
TimerClockSource::Count => 0b01,
TimerClockSource::Chained => 0b10,
TimerClockSource::ChainedCount => 0b11,
};
let output = match self.output {
TimerOutput::None => 0b00,
TimerOutput::Pulse => 0b01,
TimerOutput::Toggle => 0b10,
TimerOutput::PulseCount => 0b11,
};
(clock_source << 4) | (!self.continuous as u8) << 3 | (output << 1) | (self.running as u8)
}
/// Handle a write to the timer's data register on the MOS 6526 CIA.
fn write_cia(&mut self, value: u8) {
self.running = (value & 0b0000_0001) != 0;
self.continuous = (value & 0b0000_1000) == 0;
self.output = match value & 0b0000_0110 {
0b0000_0000 => TimerOutput::None,
0b0000_0010 => TimerOutput::Pulse,
0b0000_0100 => TimerOutput::Toggle,
0b0000_0110 => TimerOutput::PulseCount,
_ => unreachable!(),
};
self.clock_source = match value & 0b0011_0000 {
0b0000_0000 => TimerClockSource::Phi2,
0b0001_0000 => TimerClockSource::Count,
0b0010_0000 => TimerClockSource::Chained,
0b0011_0000 => TimerClockSource::ChainedCount,
_ => unreachable!(),
};
}
/// Reset the timer's internal state.
fn reset(&mut self) {
self.latch = 0;
self.counter = 0;
self.interrupt = false;
self.continuous = false;
self.running = true;
self.output = TimerOutput::None;
self.clock_source = TimerClockSource::Phi2;
}
}
/// The shift register used by the MOS 6522 VIA and MOS 6526 CIA.
pub struct ShiftRegister {
/// The data currently in the shift register.
data: u8,
/// The control register used on the MOS 6522 VIA.
control: u8,
/// The current direction set on the MOS 6526 CIA.
/// If 0, the shift register is in input mode; if 1, the shift register is in output mode.
direction: bool,
}
impl ShiftRegister {
pub fn new() -> Self {
Self {
data: 0,
control: 0,
direction: false,
}
}
/// Reset the shift register's internal state.
pub fn reset(&mut self) {
self.data = 0;
self.control = 0;
self.direction = false;
}
}
/// Registers for interrupt flags and interrupt enable bits.
/// Each bit from 0 to 6 corresponds to an interrupt source.
pub struct InterruptRegister {
/// The current state of which interrupts are enabled.
/// If a bit is set, the corresponding interrupt is enabled.
pub interrupt_enable: u8,
}
impl InterruptRegister {
/// Read the apparent value of the interrupt register, based on the provided interrupt enable bits.
pub fn read_flags(&self, mut value: u8) -> u8 {
if (value & self.interrupt_enable) != 0 {
value |= 0x80;
}
value
}
/// Read the value of the interrupt enable register.
pub fn read_enable(&self) -> u8 {
self.interrupt_enable
}
/// Write to the interrupt enable register.
pub fn write_enable(&mut self, value: u8) {
if (value & 0x80) != 0 {
// set bits
self.interrupt_enable |= value & 0x7F;
} else {
// clear bits
self.interrupt_enable &= !(value & 0x7F);
}
}
/// Is the specified interrupt enabled?
pub fn is_enabled(&self, interrupt: u8) -> bool {
(self.interrupt_enable & interrupt) != 0
}
}
impl InterruptRegister {
fn new() -> Self {
Self {
interrupt_enable: 0,
}
}
fn reset(&mut self) {
self.interrupt_enable = 0;
}
}