1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
use crate::memory::{
  mos652x::{InterruptRegister, PortRegisters, ShiftRegister, Timer, TimerOutput},
  ActiveInterrupt, Memory, Port,
};

#[allow(dead_code)]
pub mod sr_control_bits {
  pub const SHIFT_DISABLED: u8 = 0b000;
  pub const SHIFT_IN_BY_T2: u8 = 0b001;
  pub const SHIFT_IN_BY_SYSTEM_CLOCK: u8 = 0b010;
  pub const SHIFT_IN_BY_EXTERNAL_CLOCK: u8 = 0b011; // PB6?

  pub const SHIFT_OUT_FREE_RUN: u8 = 0b100; // runs by T2, but disables the counter to run forever
  pub const SHIFT_OUT_BY_T2: u8 = 0b101;
  pub const SHIFT_OUT_BY_SYSTEM_CLOCK: u8 = 0b110;
  pub const SHIFT_OUT_BY_EXTERNAL_CLOCK: u8 = 0b111; // PB6?

  pub const C1_ACTIVE_TRANSITION_FLAG: u8 = 0b10000000; // 1 = 0->1, 0 = 1->0
  pub const C2_ACTIVE_TRANSITION_FLAG: u8 = 0b01000000;
  pub const C2_DIRECTION: u8 = 0b00100000; // 1 = output, 0 = input
  pub const C2_CONTROL: u8 = 0b00011000; // ???
  pub const DDR_SELECT: u8 = 0b00000100; // enable accessing DDR
  pub const C1_CONTROL: u8 = 0b00000011; // interrupt status control
}

/// The MOS 6522 Versatile Interface Adapter (VIA). Contains two ports,
/// two timers, a shift register, and some interrupt and control registers.
/// Source: <http://archive.6502.org/datasheets/mos_6522_preliminary_nov_1977.pdf>
pub struct Via {
  a: PortRegisters,
  b: PortRegisters,
  t1: Timer,
  t2: Timer,
  sr: ShiftRegister,
  interrupts: InterruptRegister,
  pcr: u8, // peripheral control register
}

#[allow(dead_code)]
pub mod interrupt_bits {
  pub const MASTER: u8 = 0b10000000;
  pub const T1_ENABLE: u8 = 0b01000000;
  pub const T2_ENABLE: u8 = 0b00100000;
  pub const CB1_ENABLE: u8 = 0b00010000;
  pub const CB2_ENABLE: u8 = 0b00001000;
  pub const SR_ENABLE: u8 = 0b00000100;
  pub const CA1_ENABLE: u8 = 0b00000010;
  pub const CA2_ENABLE: u8 = 0b00000001;
}

impl Via {
  pub fn new(a: Box<dyn Port>, b: Box<dyn Port>) -> Self {
    Self {
      a: PortRegisters::new(a),
      b: PortRegisters::new(b),
      t1: Timer::new(),
      t2: Timer::new(),
      sr: ShiftRegister::new(),
      interrupts: InterruptRegister::new(),
      pcr: 0,
    }
  }
}

impl Memory for Via {
  fn read(&mut self, address: u16) -> u8 {
    match address % 0x10 {
      0x00 => self.b.read(),
      0x01 => self.a.read(), // TODO: controls handshake?
      0x02 => self.b.ddr,
      0x03 => self.a.ddr,
      0x04 => {
        self.t1.interrupt = false;
        (self.t1.counter & 0xff) as u8
      }
      0x05 => ((self.t1.counter >> 8) & 0xff) as u8,
      0x06 => (self.t1.latch & 0xff) as u8,
      0x07 => ((self.t1.latch >> 8) & 0xff) as u8,
      0x08 => {
        self.t2.interrupt = false;
        (self.t2.counter & 0xff) as u8
      }
      0x09 => ((self.t2.counter >> 8) & 0xff) as u8,
      0x0a => self.sr.data,
      0x0b => {
        let t1_output_enable = match self.t1.output {
          TimerOutput::None => false,
          TimerOutput::Pulse => true,
          _ => unreachable!(),
        };

        let t2_pulse_counting = match self.t2.output {
          TimerOutput::None => false,
          TimerOutput::PulseCount => true,
          _ => unreachable!(),
        };

        (t1_output_enable as u8) << 7
          | (self.t1.continuous as u8) << 6
          | (t2_pulse_counting as u8) << 5
          | self.sr.control << 2
          | (self.b.latch_enabled as u8) << 1
          | (self.a.latch_enabled as u8)
      }
      0x0c => self.pcr,
      0x0d => {
        let mut value = 0;
        if self.t1.interrupt {
          value |= interrupt_bits::T1_ENABLE;
        }
        if self.t2.interrupt {
          value |= interrupt_bits::T2_ENABLE;
        }

        self.interrupts.read_flags(value)
      }
      0x0e => self.interrupts.read_enable(),
      0x0f => self.a.read(),
      _ => unreachable!(),
    }
  }

  fn write(&mut self, address: u16, value: u8) {
    match address % 0x10 {
      0x00 => self.b.write(value),
      0x01 => self.a.write(value), // TODO: controls handshake?
      0x02 => self.b.ddr = value,
      0x03 => self.a.ddr = value,
      0x04 => self.t1.latch = (self.t1.latch & 0xff00) | (value as u16),
      0x05 => {
        self.t1.latch = (self.t1.latch & 0x00ff) | ((value as u16) << 8);
        self.t1.counter = self.t1.latch as i32;
        self.t1.running = true;
        self.t1.interrupt = false;
      }
      0x06 => self.t1.latch = (self.t1.latch & 0xff00) | (value as u16),
      0x07 => {
        self.t1.latch = (self.t1.latch & 0x00ff) | ((value as u16) << 8);
        self.t1.interrupt = false;
      }
      0x08 => self.t2.latch = (self.t2.latch & 0xff00) | (value as u16),
      0x09 => {
        self.t2.latch = (self.t2.latch & 0x00ff) | ((value as u16) << 8);
        self.t2.counter = self.t2.latch as i32;
        self.t2.running = true;
        self.t2.interrupt = false;
      }
      0x0a => self.sr.data = value,
      0x0b => {
        self.t1.continuous = (value & 0b01000000) != 0;
        self.sr.control = (value & 0b00011100) >> 2;
        self.b.latch_enabled = (value & 0b00000010) != 0;
        self.a.latch_enabled = (value & 0b00000001) != 0;

        self.t1.output = if (value & 0b10000000) != 0 {
          TimerOutput::Pulse
        } else {
          TimerOutput::None
        };
        self.t2.output = if (value & 0b00100000) != 0 {
          TimerOutput::PulseCount
        } else {
          TimerOutput::None
        };
      }
      0x0c => self.pcr = value,
      0x0d => {
        if (value & interrupt_bits::T1_ENABLE) == 0 {
          self.t1.interrupt = false;
        }
        if (value & interrupt_bits::T2_ENABLE) == 0 {
          self.t2.interrupt = false;
        }
      }
      0x0e => self.interrupts.write_enable(value),
      0x0f => self.a.write(value),
      _ => unreachable!(),
    }
  }

  fn reset(&mut self) {
    self.a.reset();
    self.b.reset();
  }

  fn poll(&mut self, cycles_since_poll: u64, total_cycle_count: u64) -> ActiveInterrupt {
    if self.t1.poll(cycles_since_poll, total_cycle_count)
      && self.interrupts.is_enabled(interrupt_bits::T1_ENABLE)
    {
      return ActiveInterrupt::IRQ;
    }

    if self.t2.poll(cycles_since_poll, total_cycle_count)
      && self.interrupts.is_enabled(interrupt_bits::T2_ENABLE)
    {
      return ActiveInterrupt::IRQ;
    }

    if self.a.poll(cycles_since_poll, total_cycle_count)
      || self.b.poll(cycles_since_poll, total_cycle_count)
    {
      return ActiveInterrupt::IRQ;
    }

    ActiveInterrupt::None
  }
}

#[cfg(test)]
mod tests {
  use crate::memory::NullPort;

  use super::*;

  #[test]
  fn test_read_write() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // writes without DDR shouldn't be reflected in reads
    via.write(0x00, 0b10101010);
    assert_eq!(0, via.read(0x00));
    via.write(0x01, 0b00110011);
    assert_eq!(0, via.read(0x01));

    // write to the DDR
    via.write(0x02, 0b11110000);
    via.write(0x03, 0b00111100);

    // now, our past writes should be reflected in reads
    // (masked by the DDR)
    assert_eq!(0b10100000, via.read(0x00));
    assert_eq!(0b11110000, via.read(0x02));
    assert_eq!(0b00110000, via.read(0x01));
    assert_eq!(0b00111100, via.read(0x03));

    // and future writes should be reflected in reads
    via.write(0x00, 0b01010101);
    assert_eq!(0b01010000, via.read(0x00));
  }

  #[test]
  fn test_timer_1() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // enable timer 1 interrupts
    via.write(0x0e, interrupt_bits::MASTER | interrupt_bits::T1_ENABLE);

    // set the timer to count down from 0x10
    via.write(0x04, 0x10);
    via.write(0x05, 0x00);

    for _ in 0..0x0F {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }

    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));

    // polling again shouldn't do anything
    for _ in 0..0x20 {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }
  }

  #[test]
  fn test_timer_2() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // enable timer 2 interrupts
    via.write(0x0e, interrupt_bits::MASTER | interrupt_bits::T2_ENABLE);

    // set the timer to count down from 0x1234
    via.write(0x08, 0x34);

    // polling now shouldn't do anything
    assert_eq!(ActiveInterrupt::None, via.poll(1, 0));

    // timer begins when the high byte is written
    via.write(0x09, 0x12);

    for _ in 0..0x1233 {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }

    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));
  }

  #[test]
  fn test_t1_continuous() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // enable timer 1 interrupts
    via.write(0x0e, interrupt_bits::MASTER | interrupt_bits::T1_ENABLE);

    // set timer 1 to continuous mode
    via.write(0x0b, 0b01000000);

    // set the timer to count down from 0x10
    via.write(0x04, 0x10);
    via.write(0x05, 0x00);

    for _ in 0..0x0F {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }

    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));

    for _ in 0..0x0F {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }

    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));
  }

  #[test]
  fn test_ier_register() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // put something in the register
    via.write(
      0x0e,
      interrupt_bits::MASTER | interrupt_bits::T1_ENABLE | interrupt_bits::SR_ENABLE,
    );

    // we should read this with the master bit cleared
    assert_eq!(
      interrupt_bits::T1_ENABLE | interrupt_bits::SR_ENABLE,
      via.read(0x0e)
    );

    // *set* bits -- this shouldn't clear any
    via.write(
      0x0e,
      interrupt_bits::MASTER | interrupt_bits::T1_ENABLE | interrupt_bits::T2_ENABLE,
    );
    assert_eq!(
      interrupt_bits::T1_ENABLE | interrupt_bits::SR_ENABLE | interrupt_bits::T2_ENABLE,
      via.read(0x0e)
    );

    // *clear* bits
    via.write(0x0e, interrupt_bits::T2_ENABLE | interrupt_bits::SR_ENABLE);
    assert_eq!(interrupt_bits::T1_ENABLE, via.read(0x0e));
  }

  #[test]
  fn test_ier_timers() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // enable timer 1 interrupts
    via.write(0x0e, interrupt_bits::MASTER | interrupt_bits::T1_ENABLE);

    // set timer 1 to count down from 0x10
    via.write(0x04, 0x10);
    via.write(0x05, 0x00);

    // set timer 2 to count down from 0x08
    via.write(0x08, 0x08);
    via.write(0x09, 0x00);

    // timer 1 should interrupt first
    for _ in 0..0x0F {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }

    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));
  }

  #[test]
  fn test_ifr() {
    let mut via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    // enable timer 1 interrupts
    via.write(0x0e, interrupt_bits::MASTER | interrupt_bits::T1_ENABLE);

    // set timer 1 to continuous mode
    via.write(0x0b, 0b01000000);

    // set timer 1 to count down from 0x10
    via.write(0x04, 0x10);
    via.write(0x05, 0x00);

    // set timer 2 to count down from 0x08
    via.write(0x08, 0x08);
    via.write(0x09, 0x00);

    // timer 2 shouldn't trigger an interrupt
    for _ in 0..0x08 {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }

    // ...but the flag register should be set
    assert_eq!(interrupt_bits::T2_ENABLE, via.read(0x0d));

    // timer 1 should then trigger an interrupt
    for _ in 0..0x07 {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }
    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));

    // ...and set the corresponding flag, plus the master bit
    assert_eq!(
      interrupt_bits::MASTER | interrupt_bits::T1_ENABLE | interrupt_bits::T2_ENABLE,
      via.read(0x0d)
    );

    // clearing the master bit should have no effect
    via.write(0x0d, !interrupt_bits::MASTER);
    assert_eq!(
      interrupt_bits::MASTER | interrupt_bits::T1_ENABLE | interrupt_bits::T2_ENABLE,
      via.read(0x0d)
    );

    // clearing just timer 1 should clear the master bit
    via.write(0x0d, !interrupt_bits::T1_ENABLE);
    assert_eq!(interrupt_bits::T2_ENABLE, via.read(0x0d));

    // clearing timer 2 should work as expected
    via.write(0x0d, !interrupt_bits::T2_ENABLE);
    assert_eq!(0, via.read(0x0d));

    // if we let timer 1 run again, it should set the flag again
    for _ in 0..0x0F {
      assert_eq!(ActiveInterrupt::None, via.poll(1, 0));
    }
    assert_eq!(ActiveInterrupt::IRQ, via.poll(1, 0));
  }
}