1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use crate::cpu::{
  mos6502::{MemoryIO, Mos6502, Mos6502Variant},
  Cpu,
};
use crate::keyboard::{KeyAdapter, KeyMappingStrategy, SymbolAdapter};
use crate::memory::mos652x::{Pia, Via};
use crate::memory::{BlockMemory, BranchMemory, NullMemory, NullPort, Port};
use crate::platform::{Color, PlatformProvider, WindowConfig};
use crate::systems::{BuildableSystem, System};
use instant::Instant;
use std::cell::Cell;
use std::rc::Rc;
use std::sync::Arc;
use std::time::Duration;
mod roms;
pub use roms::PetSystemRoms;
mod keyboard;
pub use keyboard::PetKeys;
use keyboard::{PetKeyboardAdapter, PetSymbolAdapter, KEYBOARD_MAPPING};

use self::keyboard::PetVirtualAdapter;

const WIDTH: u32 = 40;
const HEIGHT: u32 = 25;
const CHAR_WIDTH: u32 = 8;
const CHAR_HEIGHT: u32 = 8;
const VRAM_SIZE: usize = 1024; // 24 extra bytes to make mapping easier

/// Port A on the first PIA.
/// This is used for generating the 60Hz interrupt (which is fired when the
/// screen drawing reaches the last line), and for setting the active
/// row of the keyboard matrix.
pub struct PetPia1PortA {
  keyboard_row: Rc<Cell<u8>>,
  last_draw_instant: Option<Instant>,
  last_draw_cycle: u64,
}

impl PetPia1PortA {
  pub fn new() -> Self {
    Self {
      keyboard_row: Rc::new(Cell::new(0)),
      last_draw_instant: None,
      last_draw_cycle: 0,
    }
  }

  pub fn get_keyboard_row(&self) -> Rc<Cell<u8>> {
    self.keyboard_row.clone()
  }
}

impl Port for PetPia1PortA {
  fn read(&mut self) -> u8 {
    0b1000_0000 | self.keyboard_row.get()
    //^         diagnostic mode off
    // ^        IEEE488 (not implemented)
    //  ^^      Cassette sense (not implemented)
    //     ^^^^ Keyboard row select
  }

  fn write(&mut self, value: u8) {
    self.keyboard_row.set(value & 0b1111);
  }

  fn poll(&mut self, _cycles_since_poll: u64, total_cycle_count: u64) -> bool {
    // let min_elapsed = ((info.cycles_per_second as f64 / 60.0) * (2.0 / 3.0)) as u64;
    let min_elapsed = 0; // TODO: fix

    match self.last_draw_instant {
      Some(last_draw) => {
        if (last_draw.elapsed() > Duration::from_millis(17))
          && (total_cycle_count > self.last_draw_cycle + min_elapsed)
        {
          self.last_draw_cycle = total_cycle_count;
          self.last_draw_instant = Some(Instant::now());
          true
          // false
        } else {
          false
        }
      }
      None => {
        self.last_draw_instant = Some(Instant::now());
        false
      }
    }
  }

  fn reset(&mut self) {
    self.keyboard_row.set(0);
  }
}

/// Port B on the first PIA.
/// This is used for reading the keyboard matrix.
pub struct PetPia1PortB {
  keyboard_row: Rc<Cell<u8>>,
  mapping_strategy: KeyMappingStrategy,
  platform: Arc<dyn PlatformProvider>,
}

impl PetPia1PortB {
  pub fn new(
    keyboard_row: Rc<Cell<u8>>,
    mapping_strategy: KeyMappingStrategy,
    platform: Arc<dyn PlatformProvider>,
  ) -> Self {
    Self {
      keyboard_row,
      mapping_strategy,
      platform,
    }
  }
}

impl Port for PetPia1PortB {
  fn read(&mut self) -> u8 {
    let row = self.keyboard_row.get();
    let row = KEYBOARD_MAPPING[row as usize % 10];
    let mut value = 0b1111_1111;

    let state = match &self.mapping_strategy {
      KeyMappingStrategy::Physical => PetKeyboardAdapter::map(&self.platform.get_key_state()),
      KeyMappingStrategy::Symbolic => {
        PetSymbolAdapter::map(&SymbolAdapter::map(&self.platform.get_key_state()))
      }
    };

    let state = state | PetVirtualAdapter::map(&self.platform.get_virtual_key_state());

    for (i, key) in row.iter().enumerate() {
      if state.is_pressed(*key) {
        value &= !(1 << i);
      }
    }
    value
  }

  fn write(&mut self, _value: u8) {}

  fn poll(&mut self, _cycles_since_poll: u64, _total_cycle_count: u64) -> bool {
    false
  }

  fn reset(&mut self) {}
}

/// Configuration for a Commodore PET system.
pub struct PetSystemConfig {
  pub mapping: KeyMappingStrategy,
}

impl BuildableSystem<PetSystemRoms, PetSystemConfig> for PetSystem {
  fn build(
    roms: PetSystemRoms,
    config: PetSystemConfig,
    platform: Arc<dyn PlatformProvider>,
  ) -> Box<dyn System> {
    platform.request_window(WindowConfig::new(
      WIDTH * CHAR_WIDTH,
      HEIGHT * CHAR_HEIGHT,
      2.0,
    ));

    let ram = BlockMemory::ram(0x8000);
    let vram = BlockMemory::ram(VRAM_SIZE);

    let expansion_rom_9 = NullMemory::new();
    let expansion_rom_a = NullMemory::new();
    let expansion_rom_b = NullMemory::new();

    let basic_rom = BlockMemory::from_file(0x2000, roms.basic);
    let editor_rom = BlockMemory::from_file(0x1000, roms.editor);

    let port_a = PetPia1PortA::new();
    let port_b = PetPia1PortB::new(port_a.get_keyboard_row(), config.mapping, platform);
    let pia1 = Pia::new(Box::new(port_a), Box::new(port_b));
    let pia2 = Pia::new(Box::new(NullPort::new()), Box::new(NullPort::new()));
    let via = Via::new(Box::new(NullPort::new()), Box::new(NullPort::new()));

    let kernel_rom = BlockMemory::from_file(0x1000, roms.kernal);

    let memory = BranchMemory::new()
      .map(0x0000, ram)
      .map(0x8000, vram)
      .map(0x9000, expansion_rom_9)
      .map(0xA000, expansion_rom_a)
      .map(0xB000, expansion_rom_b)
      .map(0xC000, basic_rom)
      .map(0xE000, editor_rom)
      .map(0xE810, pia1)
      .map(0xE820, pia2)
      .map(0xE840, via)
      .map(0xF000, kernel_rom);

    let cpu = Mos6502::new(memory, Mos6502Variant::NMOS);

    Box::new(PetSystem {
      cpu,
      characters: roms.character.get_data(),
    })
  }
}

/// The Commodore PET system.
pub struct PetSystem {
  cpu: Mos6502,
  characters: Vec<u8>,
}

impl System for PetSystem {
  fn get_cpu_mut(&mut self) -> Box<&mut dyn Cpu> {
    Box::new(&mut self.cpu)
  }

  fn tick(&mut self) -> Duration {
    Duration::from_secs_f64(1.0 / 1_000_000.0) * self.cpu.tick() as u32
  }

  fn reset(&mut self) {
    self.cpu.reset();
  }

  fn render(&mut self, framebuffer: &mut [u8], config: WindowConfig) {
    for y in 0..HEIGHT {
      for x in 0..WIDTH {
        let index = (y * WIDTH + x) as u16;
        let value = self.cpu.read(0x8000 + index);

        let character_index = (value as usize) * 8;

        let mut character = self.characters[character_index..(character_index + 8)].to_vec();

        if value & 0x80 != 0 {
          character = character.iter().map(|&x| !x).collect();
        }

        for line in 0..CHAR_HEIGHT {
          let line_data = character[line as usize];
          for pixel in 0..CHAR_WIDTH {
            let color = if line_data & (1 << (CHAR_WIDTH - 1 - pixel)) != 0 {
              Color::new(0, 255, 0)
            } else {
              Color::new(0, 0, 0)
            };

            let x = x * CHAR_WIDTH + pixel;
            let y = y * CHAR_HEIGHT + line;
            let index = ((y * config.width + x) * 4) as usize;
            let pixel = &mut framebuffer[index..(index + 4)];
            pixel.copy_from_slice(&color.to_rgba());
          }
        }
      }
    }
  }
}